Becoming an artist: awakenings

This is about my journey. Everyone’s journey will be different. I am addressing those, who like me, have spent a long time thinking about doing art, but never finding the time or courage to do it.

How many people suffer from that debilitating idea “I can’t paint*”. This is often because someone told you so, or gave your confidence such a knock, you never quite recovered enough to try again [* paint, or anything else you would like to do – learn to play an instrument, be a sculptor, do maths, play the drums, or whatever].

Schoolchildren are expected to make a choice quite early in life as to what they want to be. At face value it seems reasonable to expect a student to start to specialise at some point, but the mirror image of this is that they must ‘drop’ a whole load of stuff that is valuable in life. Little wonder that in older age people often pick up on subjects they loved but did not have an opportunity to develop when young.

I chose to specialise in science, even before I was forced to make that choice. 

I’d happily freeze to death looking at the moon and stars through a small but much loved telescope, clutching my Observer’s Book of Astronomy (I think I may have had a 1st edition from 1962, when I was just 9). Geometry was my favourite subject. 

A little later but still quite young I had a laboratory, and loved to do experiments with bits of apparatus such as a Liebig Condensor, regularly causing a stink that required all the windows in the house to be opened to clear the smell.

I was never a rote learner. I always asked questions and challenged my teachers. I love the ability of small children to ask “why?” then why again, to never be afraid to ask questions. But it is also important to learn how to listen to the answers, to reflect on them and then to do work to explore things more deeply. This gives rise to more questions.

I wanted to understand the world and how it was put together, and went on to study Chemistry at university. To highlight my tendency to question things, there is a story from my final exams I want to share. 

There was a question about chemical bonding I didn’t like because of the way it was framed, so I answered it just like I knew the examiner would want it answered, but then wrote “However, I want to challenge the framing of this question, and believe the question ought to have been …”. 

I then wrote a second answer to my newly framed version of the question. The external examiner (Prof. S F A Kettle, I believe) was so impressed he told my mentor that he would have happily awarded me an upper first if such a thing existed. Nevertheless, I was very proud of the 1st Class Honours degree I did receive.

I stayed in academia for a while, doing a PhD at Cambridge and then a postdoc in Bristol, where I met Marilyn, who was to become my wife. 

For a range of reasons, I decided to leave academia in 1982, and worked in computer-aided design for several years, but for the final 30 years of my career up to 2016 I was an information management consultant, helping large organisation to be better at breaking down the information silos in their organisations, and be better custodians of their knowledge.

I enjoyed using creative ways to discuss and articulate problems. I never stopped asking questions. Clients liked my thoughtful approach, and the fact I didn’t try to ram software products down their throats (as had been their experience on the previous times somebody had promised to fix their issues).  In ways that I now recognise only in retrospect, my scientific and artistic sides both found expression in the way I did consultancy.

Throughout this time, I was always questioning myself, always learning from new engagements about other ways to look at things. Even when one thinks one has mastered a skill, there will always be opportunities to explore nuances or discover new variants of a skill.

Over my 63 years before I retired I had tried on a few occasions to learn to paint. Even at school there was a group of us scientists who showed artistic promise and the art teacher allowed us access to the studio to paint just for fun, not for any examination. And I have attended classes on watercolours 30 years ago, but it never went anywhere.

Meanwhile, one of the favourite activities that Marilyn and I enjoyed over these years was visiting art exhibitions, and we have numerous catalogues to testify to this. I was great at looking at art, but not doing it.

There could have been many reasons for the failure of my early attempts to develop further. 

I had a time-consuming and at times stressful job, involving a lot of travel abroad. Marilyn and I brought up two girls, and there were always too many projects (that, funnily enough, seems not to have changed!). In Bristol I was an early recruit to Scientists Against Nuclear Arms (SANA), and became its Secretary for a while. Writing and speaking took up a lot of my extra curricula head space (SANA later became SGR, Scientists for Global Responsibility, and is still active).

Since my retirement, I have become very active on climate change, giving talks and helping to found a group, Nailsworth Climate Action Network in my home town, which I am currently Secretary of.

Despite being busy with family – now with grandchildren – and home, garden, climate change, etc. I decided I wanted to have another go at learning to paint. 

Marilyn and I have for several years tried to stop buying stuff – we have too much already – and instead buy vouchers for experiences or classes. 

About 6 years ago she bought me a voucher for a set of 1-to-1 art lessons from our dear friend Di Aungier-Rose. Unlike previous art teachers I had tried, Di was very good at getting me to loosen up and not stress about what I was doing; to not obsess about colour and so on. To just have fun, and see what emerged. She imparted little nuggets of wisdom here and there, but without overloading me.  

This unlocked the first door to me becoming an artist, and gave me a boost in confidence. I knew from that point on that I had an innate ability to become an artist, even while I knew it would be a long journey.

However, the ‘3 steps forward, 2 steps back’ rule seemed to hit me. I got waylaid by climate change, sorting out my pension for retirement, etc. There is always a long list of things stopping us doing what we want!

Also, I was really hankering after learning how to use watercolours, and had a lot of admiration for the work of another local artist, Alison Vickery. So, a few years ago Marilyn bought me another present: to attend a batch of classes at Alison’s weekly art class, held at Pegasus Art in Stroud.

I will talk more about what Alison has taught me in later essays in this series, but the key point here was that I started to carve out a time during the week – every week – when I wouldn’t be distracted by the other things crowding in on me. Wednesday afternoon was to be art time. So even if I didn’t manage to do any art during the rest of the week, this time was sacrosanct.

I have kept attending these classes ever since.

Maybe that is the secret – and of course a lot easier when you are retired – to find a space to do your art. 

If you are very disciplined and no longer require a mentor, then it is perfectly possible to create this time and space for yourself. It may mean creating a Woman Shed or Man Shed in the garden, to get away from domestic distractions.

However it is done, you need to find your time, and your space.

You need to unlearn the “I can’t do X” gremlin in your brain.

Now it is time to loosen up; to experiment; to ask questions; and to rediscover the joy of learning something new.

(c) Richard W. Erskine, 2020

Next essay in this series will be Becoming an artist: fundamentals

Leave a comment

Filed under Uncategorized

Keep Calm, But Take Action

How do people respond to ‘signals’ regarding their health and well-being? 

Some people will refuse to respond, such as these smokers I saw outside a hospital a few days ago (where I was visiting my daughter, thankfully now discharged after a nasty infection; not coronavirus).

Screenshot 2020-03-13 at 07.27.24

There is a large sign ‘Strictly No Smoking’, that is routinely ignored.

And what of people who read Richard Littlejohn and others, for years in the Daily Mail, Daily Telegraph, The Spectator, etc., railing against the ‘nanny state’ or ‘elf and safety’ ?

Large swathes of people are effectively inoculated against alarm, and will not respond to signals, even if a megaphone was put to their ear. 

These are the super-spreaders of denial and complacency. 

I am not talking here of professional dissemblers in the climate realm who make their living trying to undermine the scientific consensus. Those who write opinion pieces claiming, wrongly:

  • more CO2 is good for us because plants will flourish (Matt Ridley);
  • or claiming ocean acidification is non-existent (James Delingpole);
  • or that it’s the sun’s fault (Piers Corbyn);
  • or that we are about to enter an ice age (Daily Mail and Daily Telegraph every 6 months for the last 10 years) .

Like stories of Lord Lucan sightings, these lazy opinion formers simply dust off the old rubbish to serve it up again, and again. Year in year out. It pays the mortgage I suppose. And when they tell people what they want to hear – that we can carry on regardless – there is no shortage of chortling readers. Ha ha ha. How very funny, poking fun at the experts.

No, I am  not talking about these dissemblers, but rather, the mass of those who have been reading this rubbish for 30 years and are now impervious to evidence and scornful of experts.

And there is an epidemic of such people, who believe

no need to be alarmed, staying calm and carrying on regardless 

It is not just health or climate change, but is applied universally. For example, the  Millennium Bug was apparently overblown according to these people (having seen the code that needed fixing, I can assure you, it wasn’t).

However, those who deal with addressing threats are in a no-win situation: if they act and prevent the worst happening, then people – who are largely unaware of what is being done behind the scenes – will say ‘you see, it wasn’t a problem’.  If they didn’t act, then guess who would get the blame.

Yet when people do raise the alarm, such as when parents wrote letters complaining of the risks of the vast colliery tip adjacent to the Welsh town of Aberfan, they are often brushed off, and the result was a disaster that lives on in our memory (see Note).

Now we have the Covid-19 virus. 

It is no surprise that there have been many saying that people are being unnecessarily alarmed; and the message is the same – we should ‘Keep Calm and Carry On’.

It’s just like seasonal flu, don’t worry. It will disappear soon enough.

These are often the same people who rail against ‘climate alarmism’.

Man-made global heating will be orders of magnitude worse than Covid-19, across every aspect of society – food security, sea-level rise, eco-system collapse, mass migration, heat stress, etc. – and over a longer timescale but with increasing frequency of episodic shocks, of increasing intensity.

Unlike Covid-19, there will be no herd immunity to climate change.

But we have the ability to halt its worst impacts, if we act with urgency.

We cannot quarantine the super-spreaders of denial and complacency, but we can confront them and reject their message.

I wonder, as the mood seems to be changing, and experts are now back in fashion it seems, could this be a turning point for action on climate change?

Can we all now listen to the experts on climate change?

Can we Keep Calm, but Take Action?

(c) Richard W. Erskine, 2020

 

Note

There was a collapse of part of the massive colliery spoil tip at 0915 on 21st October 1966  The main building hit was Pantglas Junior School, where lessons had just begun. Five teachers and 109 children were killed in the school.

As one example of numerous correspondence prior to this, raising concerns, was a petition from parents of children at The Grove school raising the issue of flooding undermining the tip. This was passed up through the bureaucracy, but a combination of the Borough Council and National Coal Board failed to act. As the official report noted in unusually strong words:

“As we shall hereafter see to make clear, our strong and unanimous view is that the Aberfan disaster could and should have been prevented. … the Report which follows tells not of wickedness but of ignorance, ineptitude and a failure in communications. Ignorance on the part of those charged at all levels with the siting, control and daily management of tips; bungling ineptitude on the part of those who had the duty of supervising and directing them; and failure on the part of those having knowledge of the factors which affect tip safety to communicate that knowledge and to see that it was applied” (bullet 18., page 13)

1966-67 (553) Report of the tribunal appointed to inquire into the disaster at Aberfan on October 21st, 1966

Leave a comment

Filed under Climate Science, Uncategorized

Thoughts on starting a community climate action group (a talk)

Good evening.

Professor Katharine Hayhoe, a leading climate scientist, and hugely influential communicator, is often asked:

What is the first thing I should do about climate change?

Her answer is simple:

Talk about it!

How on Earth can that reduce our carbon footprint you may ask?

On the other hand, it is a common phenomenon when climate groups start, that the first thought is often ‘we need to build a solar PV array on the edge of town’. 

I am not saying don’t do that, but there are big benefits to talking about it, and not rushing to build.

  • Firstly, if people are not fully on board with the idea that urgent action is needed to address global warming, then some talking will really help change hearts and minds.
  • Secondly, there are many different ways we can reduce our carbon footprint, and we need to push forward on all fronts. Don’t let the enthusiasm for one project crowd out ideas for other things that need to be discussed, and weighed up.
  • Thirdly, if we focus solely on technological solutions like electric cars, we potentially exclude a lot of people who are put off by technology, or cannot afford to invest in them; and would like a reliable bus service to be a priority! 
      • We need to build a much bigger tent where we discuss topics like consumption, waste, heating, public transport, energy efficiency and local food. Topics that will draw in as wide a population as possible.
  • Finally, by developing a wide perspective on all different approaches and potential initiatives, the group will be in a better position to call on community support for emerging projects.

Some will argue: but why is the challenge of addressing dangerous global warming being placed on the shoulders of householders and local communities? 

Surely, Government and big business have the resources and power to make it happen?

I reject the implied binary thinking here.

In fact, Government, big business, pension funds, County Councils, District Councils, Parish Councils, local businesses, householders – you and me – can all make a difference and influence what happens.

Ok, so there are some things that only Governments and big business can do. But ultimately, every product and service is – directly or indirectly – created for us. 

We have agency – we can decide: 

  • what we do, 
  • how we do it.
  • and how often we do it.

We can choose to car share twice a week; or opt for that staycation; or reduce our meat consumption. Every family is different, but we make lots of choices, intentionally or not; and every choice matters.

We started NailsworthCAN in 2016 around the time of the Paris Agreement. Our focus was always on practical action rather than protest. But action comes in many forms: engaging, influencing, networking, capacity building, constructing.

We have spent a lot of time developing the conversation with different groups in the community: with the Town Council, Church, Schools, Rotary, Transition Stroud, etc., and with our previous and current MP.  We act sometimes to lead, sometime to act as a catalyst, and sometimes simply to provide support to others. Hence the use of the word ‘network’.

We have run stalls, organised talks on diverse topics, and identified a range of projects. We created and distributed a Carbon Pledges sheet. We have met and talked with hundreds of local people, and we have recruited members with a fantastic range of skills and knowledge.

We have ran workshops to gather ideas on local projects that people are interested in across a range of topics –

  • Food and agriculture;
  • Mobility and transport;
  • Buildings and their environment;
  • Energy generation;
  • Waste;
  • Nature and the Environment;
  • Health and Wellbeing.

We have worked with the Town Council to help develop an outline plan across these areas.

One specific initiative is to conduct a survey of hospitality venues in town to assess current practice on energy use, waste, etc., and identify ‘wins’ for these venues, the town and the planet.

Another initiative is to develop a 5-year tree planting plan on council land.

And another is a community-led domestic retrofit scheme.

And yes, we have a few renewable energy generation schemes in the pipeline.

Each of the climate groups I have met has its own personality, way of organising, and methods for coordinating their efforts with their respective Parish councils.

Each has had ideas on how to push forward on different fronts, and all can learn from each other.

The great evolutionary biologist E. O. Wilson – when being interviewed on BBC Radio 4’s ‘The Life Scientific’ said:

“Humanity has Palaeolithic emotions, medieval institutions and god-like power, … and that is a dangerous combination”.

But I would respond by saying we also have the capacity to overcome our destructive power, and work collectively to reveal the positive side of our humanity.

Don’t be critical if you start with talking, then move to small actions.

Just don’t stop at small actions.

Small actions can provide learnings and help us move to larger ones.

Share and celebrate success, as we do on social and printed media. 

Small conversations can be the foundation for bigger ones, resulting in significant actions, and system change.  Ultimately, this is all about system change; business as usual  will not get us to where we need to be.

Remember, it is a marathon not a sprint, and like a marathon, we need to help each other stay the course.

I wish Minchinhampton every success as it starts its conversation.

Thank you.

…. o o O o o ….

Richard W. Erskine, Secretary of NailsworthCAN

Invited talk at the launch of Minchinhampton Climate Action Network.

11th March 2020.

Leave a comment

Filed under Uncategorized

Do Tipping Points mean Runaway Global Warming after 12 years?

Is it 12 years?

That’s a belief I am finding increasingly common, but it really isn’t what the science is telling us.

The science is saying that things are very serious and every year we fail to “bend the curve down” as Greta Thunberg puts it, the worse the outcomes. We know from the IPCC (Intergovernmental Panel on Climate Change) 1.5oC Special Report that 2oC is significantly, perhaps surprisingly, worse than 1.5oC.

That is not a reason for a dystopian view that all is lost if we fail to get to zero after 12 (or is it now 11 years) if we don’t get to net zero by then.

The science is not that certain. The IPCC said that 2030 global net emissions must reduce by 45% versus 2010 emissions to achieve 1.5oC, and get to zero by 2050.

That is not to say we should not have highly ambitious targets, because the sooner we peak the atmospheric concentration of CO2 in the atmosphere, the sooner we peak the global warming (see Note 1).

Because it is such a huge challenge to decarbonise every sector of our economies, we should have started 30 years ago, and now we have to move very fast; whatever date you put on it. So, if I question some of the dystopian memes out there it is certainly not to question the need for urgent action.

Feedbacks and Tipping Points

I think what lies at the root of the dystopian message is a belief that tipping points – and there are quite a number in the Earth system – are like dominoes, and if one goes over, then all the rest follow. At a meeting I went to that included policy experts, XR, scientists, and others, I got into a chat about feedbacks and tipping points.

The person I spoke to was basically 100% convinced that if we did not get to net zero after ’12 years’ we would set off feedbacks and tipping points. It really would be game over. I want to summarise my side of the conversation:

I appreciate your concern about tipping points; they are real and need to be taken into account.

It is complicated and there are cases that can runaway (take Venus), but there is often a response that limits a particular feedback.

For example, extra CO2 causes warming, which due to the Clausius–Clapeyron relation means that additional water vapour (gaseous form of water, not clouds) is added to the atmosphere (7% extra for every 1C of warming). Since H2O is also a strong greenhouse gas that causes more warming.

This is a crucial ‘fast feedback’ included in climate models. It means that the expected 3oC of warming from doubling CO2 in the atmosphere is actually 1oC from the CO2 and 2oC extra from the H2O feedback (see Note 2).

Ok, so why doesn’t this warming carry on as a runaway (there is plenty of water in the ocean)?

The reason is Stefan’s Law (or ‘Planck Response’).

A body at temperature T emits energy at a rate proportional to T to the power 4. So the loss of heat accelerates and this at some points stops the feedback process (see Note 3).

A way to think about this is a plastic container with a hole at the bottom (say 7mm wide). Pour water from a tap at a constant rate, say half a litre per minute, into the container. What happens? The water level in the container rises to a point that maintains this level. At this point the pressure at the base of the container has increased to the point that the rate of flow of water out of the bottom is equal to the rate of flow in. They are in balance, or ‘equilibrium’.

If I now plug the 7mm hole and drill a 6mm one instead (yes I did this for a talk!), then with the same flow rate coming in, the level of water rises, because it requires more pressure at the base to drive water out at the rate required, to bring the system back into balance (when the level of water stops rising).

We are in both cases having the same amount of energy leaving as entering the system, but in the latter case, energy has been trapped in the system. 

This is a very good analogy for what happens with the Greenhouse Effect (see Note 4), and the level of water is analogous to the trapped energy (which means a hotter planet), and the world warms even though the rate at which energy is coming in (from the Sun) is constant. We can explain the Greenhouse Effect via this analogy simply:

The increased heat trapping power of the atmosphere with an increased concentration of COrestricts the exiting (infra-red) radiation to space – this is analogous to the reduced hole size in the container – and so …

The temperature of the Earth rises in order to force out radiation at the correct rate to balance the incoming energy – this is analogous to the increased level of water in the container. 

This demonstrates that the planet must stabilise the flow of energy out so that it equals the energy in, but with extra energy behind captured in the process (see Note 5).

The main point is that feedbacks do not inevitably mean there is a runaway.

Professor Pierrehumbert wrote a paper reviewing the possibility of a runaway in the sense of heading for a Venus scenario, and it seems unlikely “it is estimated that triggering a runaway under modern conditions would require CO2 in excess of 30,000 ppm”.

Even in more complex cases, such as melting sea ice and ice sheets, the feedbacks do not imply inevitable runaway, because in each case there is often a compensating effect that means a new equilibrium is reached.

But there is not one possible end state for a particular level of warming, there are numerous ones, and we know from the climate record that flips from one state to another can happen quite fast (the ocean conveyor belt transports huge amounts of heat around the planet and this is often implicated in these rapid transitions).

So, this is not to say that the new equilibirum reached is a good place to end up. Far from it. I agree it is serious, and the level of CO2 in the atmosphere is now unprecedented for over 3 million years. We are warming at an unprecedented rate, thousands of times faster than the Earth has seen in that period.

It is very scary and we don’t need to say a runaway is inevitable to make it even more scary!

Arguments that a feedback will trigger another, and so on, ad infinitum, may sound plausible but are not science, however confident and high profile the speaker may be. It does the XR cause no good to simply repeat wild speculation that has no scientific foundation, merely on the basis of a freewheeling use of the ‘precautionary principle’.

I hope this clarifies my point, which was not to minimise the urgency for action – far from it – I am 100% behind urgent action.

However, I think that sometimes it is important to be scientifically pedantic on the question of feedbacks and runaway. The situation is scary enough.

I really worry about the dystopian message for our collective mental health, and that this might freeze people and even limit action amongst the wider public who are not activitists (but need to participate in our collective actions).

We need a message of hope, and this is it:

The sooner we can peak the atmospheric concentration of CO2 (by stopping emissions), the sooner we can halt warming, and

the lower that peak in the atmospheric concentration, the lower the level of warming.

We can make a difference!

We have to act to make hope meaningful, because being alarmed, and frozen in the headlights, and unable to act, is not a recipe for hope.

However, being duly alarmed and having hope are not mutually exclusive, if we recognise we have agency. We can all make a contribution, to agitate for, or implement, a plan of actions and the actions that follow.

(c) Richard W. Erskine, 2019

 

NOTES

(1)   The IPCC 1.5C Special Report (p.64) talks about ‘committed warming’ in the oceans that is often assumed to mean that the Earth will continue to warm even when we stop CO2 emissions due to thermal inertia of heated oceans. Surprisingly for many, this is not the case. The IPCC reiterate what is a long known effect, regarding what they term the Zero Emissions Commitment:

“The ZEC from past COemissions is small because the continued warming effect from ocean thermal inertia is approximately balanced by declining radiative forcing due to COuptake by the ocean … Thus, although present-day CO2-induced warming is irreversible on millennial time scales … past COemissions do not commit substantial further warming”

(2)   This excludes clouds, and the effect of clouds at lower and higher levels can, for this simple example, can be regarded as cancelling each other out in terms of warming and cooling. Water Vapour in the atmosphere referred to here is not condensed into droplets but is a gas that is transparent to the human eye, but like carbon dioxide, is a strong absorber of infra-red. Because carbon dioxide is a non-condensing gas, but water does condense, it is the concentration of carbon dioxide that is the ‘control knob’ when it comes to their combined warming effect.  In 1905, T.C. Chamberlin writing to Charles Abbott, eloquently explains the feedback role of water vapour, and the controlling power of carbon dioxide:

“Water vapour, confessedly the greatest thermal absorbent in the atmosphere, is dependent on temperature for its amount, and if another agent, as CO2 not so dependent, raises the temperature of the surface, it calls into function a certain amount of water vapour, which further absorbs heat, raises the temperature and calls forth more [water] vapour …”

(3)  Strictly, it is a ‘black body’ – that absorbs (and emits) energy at all frequencies – that obeys Stefan’s Law. When using the law, we express T in Kelvin units. To a reasonable approximation, we can treat the Earth as a black body for a back of the envelope calculation, and we find that without carbon dioxide in the atmosphere, the Earth – at its distance from the sun – would be 258K, or -15oC on average, a frozen world. That would be 30oC colder than our current, or pre-industrial, average of 15oC.

(4) John Tyndall originated this analogy in his memoirs Contributions to Molecular Physics in the Domain of Radiant Heat published in 1872, although he used the example of a stream and dam, which is raised, my exposition is essentially based on his precedent.

(5) One other aspect of this re-established equilibrium is that the so-called ‘Top of Atmosphere’ (TOA) – where the energy out in the form of infra-red, is balancing the energy in – is at higher altitiude. The more carbon dioxide we add, the higher this TOA. Professor Pierrehumbert explains it in this Youtube exposition, from the film Thin Ice, where he pulls in a few other aspects of the warming process, as it works on planet Earth (e.g. convection).

END

7 Comments

Filed under Climate Science, Science Communications

Google and the Internet: Friend or Foe to the Planet?

I keep hearing this meme that goes along the lines of “a Google search will use X amount of energy”, where X is often stated in a form of a scary number.

I think numbers are important.

According to one source a Google search is about 0.0003 kWh of energy, whereas a 3kW kettle running for one minute uses 3 x (1/60) = 1/20 = 0.05 kWh, which is 160 times as much (another piece  uses an equivalent figure – Note 1).

On the UK grid, with a carbon intensity of approximately 300 gCO2/kWh (and falling) that would equate to 0.09 gCO2 or roughly 0.1 gCO2 per search. On a more carbon intensive grid it could be double this, so giving 0.2 gCO2 per search, which is the figure Google provided in response to The Sunday Times article by MIT graduate Alex Wissner-Gross (cited here), who had estimated 7 gCO2 per search.

If the average Brit does the equivalent of 100 searches a day, that would be:
100 x 0.0003 kWh = 0.03 kWh, whereas according to Prof. Mackay, our total energy use (including all forms) is 125 kWh per person per day in UK, over 4,000 times more.

But that is not to say the that the total energy used by the Google is trivial.

According to a Statista article, Google used over 10 teraWatthours globally in 2018 (10 TWh = 10,000,000,000 kWh), a huge number, yes.

But the IEA reports  that world used 23,000 TWh in 2018. So Google searches would represent about 0.04% of the world’s energy on that basis, a not insignificant number, but hardly a priority when compared to electricity generation, transport, heating, food and forests. Of course, the internet is more than simply searches – we have data analysis, routers, databases, web sites, and much more. Forbes published findings from …

A new report from the Department of Energy’s Lawrence Berkeley National Laboratory figures that those data centers use an enormous amount of energy — some 70 billion kilowatt hours per year. That amounts to 1.8% of total American electricity consumption.

Other estimates indicate a rising percentage now in the low few percentage points, rivalling aviation. So I do not trivialise the impact of the internet overall as one ‘sector’ that needs to address its carbon footprint.

However, the question naturally arises, regarding the internet as a whole:

how much energy does it save, not travelling to a library, using remote conferencing, Facebooking family across the world rather than flying, etc., compared to the energy it uses?

If in future it enables us to have smarter transport systems, smart grids, smart heating, and so on, it could radically increase the efficiency of our energy use across all sectors. Of course, we would want it used in that way, rather than as a ‘trivial’ additional form of energy usage (e.g. hosting of virtual reality game).

It is by no means clear that the ‘balance sheet’ makes the internet a foe rather than friend to the planet.

Used wisely, the internet can be a great friend, if it stops us using planes, over-heating our homes, optimising public transport use, and so forth. This is not techno-fetishism, but the wise use of technology alongside the behavioural changes needed to find climate solutions. Technology alone is not the solution; solutions must be people centred.

Currently, the internet – in terms of its energy use – is a sideshow when it comes to its own energy consumption, when compared to the other things we do.

Stay focused people.

Time is short.

(c) Richard W. Erskine, 2019

 

Note 1

I have discovered that messing about with ‘units’ can cause confusion. So here is an explainer. The cited article uses a figure of 0.3 Watt hours, or 0.3 Wh for short. The more commonly used unit of energy consumption is kilo Watt hours or kWh. As 1000 Wh = 1 kWh, so it remains true if we divide both sides by 1000: 1 Wh = 0.001 kWh. And one small step means 0.1 Wh = 0.0001 kWh. Hence, 0.3 Wh = 0.0003 kWh.  If you don’t spot the ‘k’ things do get mighty confusing!

 

1 Comment

Filed under Computer Science, Global Warming Solutions, Science in Society

Fusion is the Future

I mean it, it is the future.

Or rather, to be accurate, it could be the future.

In the core of the sun, the energy production is very slow, thankfully, so the beast lasts a long time. You need about 10,000,000,000,000,000,000,000,000,000,000 collisons between hydrogen nuclei before you get 1 that successfully fuses, and releases all that energy.

Beating those odds in a man-made magnetic plasma container (such as a Tokamak) is proving to be something that will be done by tomorrow, plus 50 years (and repeat).

Boris Johnson obviously believes that the way to show a flourish of leadership is to channel dreams of technical wizardry that goes well beyond the briefings from those experts in the know.

But who believes in experts in magneto-hydrodynamics? Stop over complicating the story you naysayer PhDs. Positive mental attitude will confound physics! Get back in your box experts!

*CUT TO REAL WORLD*

Man-made fusion energy as an answer to the man-made climate emergency by 2040 is not just ignorant, it is a deliberate and cynical attempt to delay action now. It is a form of techno-fetishism that deniers love. Boris Johnson spends a lot of time with these people.

We have relevant solutions available today, and just need to get on with them.

We do indeed have a functionally infinite fusion energy generator available to humanity, and it is free.

It’s called ‘The Sun’ (an astronomical entity, not a rag masquerading as a newspaper).

If man-made fusion energy is commercialised it *MAY BE* relevant to a world *POST*  resolving the climate crisis, but is definitely not part, or even maybe part, of that resolution.

It fails key tests I discussed here

Please politicians – left, right and centre – stop playing games and take the climate emergency seriously.

It may surprise you that while Boris’s cult following will swallow anything (almost literally), the rest, and particularly the rising youth, will not.

But I am prepared to compromise. A deal is possible.

Fusion is indeed the future …

… it is the energy from the Sun!

And you might be surprised to hear that it gives rise to …

direct Photovoltaic (PV) capture of that energy,

and indirect forms of capture (e.g. wind energy).

Problem solved.

As to man-made fusion, the jury is out (and a distraction for now), and we don’t have time to wait for the verdict.

 

(c) Richard W. Erskine. 2019

Leave a comment

Filed under Climate Science, Transition to Low Carbon

Renewable Technologies: Facts, Fiction and Current Developments

Chris Wilde, Managing Director of Yorkshire Energy Systems (YES), gave a talk Renewable Technologies: Facts, Fiction and Current Developments on 5th September 2019 at The Arkell Centre in Nailsworth, hosted by Nailsworth Climate Action Town (NCAT). The focus was on domestic renewables in UK.

Chris exploded many myths and misunderstandings that even some supporters of renewables believe in. The audience included an influential range of people, from the national political level, to district and parish councillors, from Transition Stroud, local climate groups, Severn Wye Energy Agency, and local renewable energy businesses. It was an excellent talk and very well recieved.

I will be sharing a fuller record of the talk, but to briefly summarise his words that accompanied the pictures used in the talk, using my notes …

Whereas 5 years ago, or even 6 months ago, the majority of householders installing renewables were doing it simply for financial reasons, rather than to reduce their carbon footprint, that has now changed, and about half of those now doing it are motivated by concerns about global warming. Greta Thunberg and Extinction Rebellion can take a lot of credit for raising awareness.

Chris showed an aerial view of a large 110 kW (kilowatt, a unit of ‘power’) solar PV system YES did for a company close to Wembley Stadium. What is shocking is that there are huge areas of commercial roof space without solar surrounding this installation. As Chris said, it shouldn’t be a question of seeking permission to have solar – particularly on new homes or new commercial buildings – it should be required that they do have solar, and it is much cheaper to do it at build time than to retrofit later (“solar” will be used as shorthand for solar photovoltaic (PV) in the text below):

Solar Myths

Myth 1 – Solar is ugly. Leaving aside the point that saving the planet might be seen as more important than the aesthetics of roof lines, the fact is solar panels have been getting slicker and more aesthetic. It is now possible to replace tiles completely with in-roof panels.

Myth 2 – You can only have 4kW on your house. No, you can only have 4kW per phase before seeking permission from the grid.

Myth 3 – Cannot have solar without a south facing roof. Actually, the variation in input from west or east, versus south, facing panels can be as little as 15%, and in fact having east and west facing panels can be better for households needing more energy in the morning and afternoon. On flat roofs, you can pack east and west panels more tightly (because less spacing is then required to deal with shadowing effects), and this completely compensates for not being south facing.

Myth 4 – We don’t have a roof that is not shaded, so pointless. Ok, but there are other options, such as ground mounted arrays, or a tracking system like Heliomotion (which has a UK base in Stroud). Chris also showed arrays mounted high enough for sheep to graze under; and there is even a trend now to place solar on top of parking bays. There are simply so many ways of having solar fitted, there are no excuses for not doing it!

Myth 5 – The Feed In Tarif (FIT) has ended so it cannot be made to work, financially. This is wrong on several levels.

  • Firstly, the sun’s energy is free.
  • Secondly, the price of solar has dropped while the panels have increased in output (250 to 350 kW over 5 years).
  • Thirdly, it is true that FIT gave householders 40p per kWh (kiloWatt hour, a unit of ‘energy’) for all energy generated, whether exported to the grid or not, and an extra 3p per kWh for 50% of that generated that is assumed to be exported to the grid. However, while there are now no FIT payments, utility companies will have to pay for what you export, under the new Export Guarantee Scheme (Octopus are already offering 5.5p per kWh even before the scheme comes in).
  • Fourthly, with a low cost ‘solar diversion switch’ any excess solar energy can be used to heat hot water, avoiding the need to export it to the grid (and by the way, this simple device has essentially killed the ‘solar thermal’ market).
  • Fifthly, systems that were costing between £3,000 and £4,000 per kW are now down to £1,000. So, in short, payback of a solar system is still possible within 6-7 years even without the FIT subsidy.
  • Finally, the reduction in bureaucracy with the loss of FIT means that it actually might, paradoxically, accelerate uptake of solar.

Heat Pump Myths

Chris started by explaining how heat pumps work, which seems miraculous to many people, but is the product of 17th century physics: if you compress a gas, it gets hotter. And a heat pump works by transferring heat from the air (or ground) via a fluid (a refrigerant) that is compressed and then releases its heat inside the building. But for each unit of energy used by the pump, 3 to 4 units of energy is extracted from the air in the form of heat. The two main categories of heat pump are Air Sourced Heat Pumps (ASHP) and Ground Sourced Heat Pumps (GSHP). The efficiency of a heat pump will vary with external temperature, but overall is quoted as a seasonally averaged figure.

Assume you had an ASHP with 3.5 efficiency factor. If you have a heating requirement of 18,000 kWh for your home, this could be achieved by using 18,000/3.5 = 5,143 kWh of electricity. Mains gas is currently 3p per kWh and mains electricity is 13 p per kWh so to heat the house with gas would be 18,000 x £0.03 = £540 per year, whereas to do it with this ASHP would be 5,143 x £0.13 = £669; still a bit more than gas, because gas is currently ridiculously cheap, but a few things to consider:

  • when a crisis occurs in the Middle East for example, gas prices can rise, and don’t have to swing much to wipe out the current distorted advantage of cheap gas;
  • a tax on carbon including gas, will come sooner or later to reflect the damage that carbon dioxide emissions are doing;
  • even if today some electricity is coming from fossil fuel plants, increasingly the grid is being ‘greened up’ (see www.carbonintensity.org to look at how much the grid has already greened);
  • as you will see below, if you add solar to a heat pump the maths flips, because you can use the free solar electricity to help drive the heat pump and even if that is not all year round, 24-7, it has made a huge difference;
  • finally, if you cannot add solar to your heat pump for some reason, many people are prepared to pay an extra £100 or so per year to save the planet (that is clear from the recent boost in heat pump installations YES have been seeing).

One other key point is that heating a house using a heat pump requires sufficiently large radiators because it operates using a flow temperature of 45/50oC, rather than say 70oC as with a gas boiler. At 45/50oC they still heat the house to the required temperature (typically 21oC), but does so with a larger surface area of ‘emitter’ (this effectively means a slight fatter radiator, and depending on how old the heating system in a house is, that may mean that some of the radiators need to be upgraded, but rarely all radiators; even better, under floor heating can be used, increasing the area even more).

Myth 6 – It cannot work when it is cold outside. Yes it can, as described. It is basic physics at work, and no magic is involved!

Myth 7 – They are more expensive than a gas boiler, so are unaffordable. Heat pumps are more expensive to fit but the Renewable Heat Incentive (RHI) was designed precisely to deal with this. It is paid to the householder over 7 years (and commercially over 20 years), reducing running costs and overall, paying off half to two-thirds of the cost of the installation. To qualify for RHI, the key requirement is roof insulation, and if you have cavity walls, then cavity wall insulation.

Myth 8 – They cannot work in old leaky houses. Untrue. Chris presented an example of an old rectory with 290 square metre floor area, that had good roof insulation but with walls that could not be clad, and overall it was a high heat loss building. It cost £3,500 per year using an oil boiler to heat it. Using a brilliantly effective combination of a 10kW solar array and 6 under lawn ‘slinkies’ to feed a GSHP, the heating bill dropped to £1,500 per year.
That is despite the heating system being set to ‘on’ all the time (but obviously, with a thermostat it runs only when the temperature drops below the required temperature). The 80 year old grand mother loves visiting the house now because “it is always so cosy”. Chris is not saying, from this experience, that insulation is unimportant – it is crucial you get good insulation – but where it is not up to modern standards, don’t let that be a reason for not installing renewable heat: That is, a heat pump with or without solar, but preferably with because the solar reduces the amount of electricity used from the grid, and swings the maths in favour of heat pumps (versus gas).

Chris gave another example of a bungalow (177 square metre floor area) that was costing £1,551 per year to heat. With just a 4 kW roof mounted system and a 14 kW ASHP the bill came down to £903. Now this was £168 more saving than they had expected. Why? Chris believes this is down to behavioural change. Instead of the behaviour with traditional gas systems which can heat up a house fast, and people switch up the system when cold and down when hot – creating a see-saw effect – with heat pump systems, people can just keep it on and be comfy at a sensible temperature (whichever is their preference). Increasingly, Chris is persuading householders to refrain from fiddling with the heat controls and allow the system to work as pre-programmed and provide consistent, comfortable but not hotter than required levels of heating. This changes behaviour and actually creates a perception of a cosier home and reduced bills; what is not to like?

The caveat is that we need more skilled fitters who do not put in the wrong sized radiators, or pipe work, and of course householders who don’t leave doors open (trying to heat your local town is not a sensible approach!).

Renewable technologies like solar and heat pumps are not rocket science, but a basic knowledge is required and vendors are very good at providing training. Along with persuading householders to take the plunge we also need to transfer trade skill sets, to acquire the knowledge and experience to help increase adoption. If your plumber says they don’t know anything about heat pumps, encourage them to take a course – to unlearn some old ways and learn some new ways – and they might be in the vanguard of the change to renewable heat in your neighbourhood.

Chris also mentioned that he has found an issue related to Energy Performance Certificates (EPCs). The question Chris is asking Government is this:

Why is it that it is government policy to encourage the installation of heat pumps through the Renewable Heat Incentive scheme, yet EPCs never recommend them and even discourage them by predicting higher running costs for heat pumps even than old oil boilers contrary to the research carried out by the government in 2013 on which the RHI was based? Does the left hand not know what the right hand is doing?

Chris has written a paper EPCs: A MAJOR OBSTACLE TO HEAT PUMPS AND DECARBONISATION going into more detail on this issue, that can be found on the YES website.

Chris covered a number of other points and new developments such as thermal storage, but I hope this summary does justice to what was an excellent and inspiring talk.

We have a climate emergency – we need to start behaving like we actually believe it!

So let’s get to work, and make it happen! There is no excuse for not doing so.

This summary of Chris Wilde’s talk is based on my notes, so will be incomplete, as Chris is a brilliant speaker who doesn’t need a script or use bullet points. So, if any errors have crept in, naturally they are mine. Richard Erskine, 7th Sept. 2019. Any comments please provide via my blog.

1 Comment

Filed under Renewables