Ending The Climate Solution Wars: A Climate Solutions Taxonomy

If you spend even a little time looking at the internet and social media in search of enlightenment on climate solutions, you will have noted that there are passionate advocates for each and every solution out there, who are also experts in the shortcomings of competing solutions!

This creates a rather unhelpful atmosphere for those of us trying to grapple with the problem of addressing the very real risks of dangerous global warming.

There are four biases – often implied but not always stated – that lie at the heart of these unproductive arguments:

  • Lack of clear evidence of the feasibility of a solution;
  • Failure to be clear and realistic about timescales;
  • Tendency to prioritize solutions in a way that marginalizes others;
  • Preference for top-down (centralization) or bottom-up (decentralization) solutions.

Let’s explore how these manifest themselves:

Feasibility: Lack of clear evidence of the feasibility of a solution

This does not mean that an idea does not have promise (and isn’t worthy of R&D investment), but refers to the tendency to champion a solution based more on wishful thinking than any proven track record. For example, small modular nuclear has been championed as the path to a new future for nuclear – small, modular, scaleable, safe, cheap – and there are an army of people shouting that this is true. We have heard recent news that the economics of small nuclear are looking a bit shaky. This doesn’t mean its dead, but it does rather put the onus on the advocates to prove their case, and cut the PR, as Richard Black has put it. Another one that comes to mind is ‘soil carbon’ as the single-handed saviour (as discussed in Incredulity, Credulity and the Carbon Cycle). The need to reform agriculture is clear, but it is also true (according to published science) that a warming earth could make soils a reinforcer of warming, rather than a cooling agent; the wisdom of resting hopes in regenerative farming as the whole of even a major contributor, is far from clear. The numbers are important.

Those who do not wish to deal with global warming (either because they deny its seriousness or because they do not like the solutions) quite like futuristic solutions, because while we are debating long-off solutions, we are distracted from focusing on implementing existing solutions.

Timescale: Failure to be clear and realistic about timescales

Often we see solutions that seem to clearly have promise and will be able to make a major contribution in the future. The issue is that even when they have passed the feasibility test, they fail to meet it on a timescale required. There is not even one timescale, as discussed in Solving Man-made Global Warming: A Reality Check, as we have an immediate need to reduce carbon emissions (say, 0-10 years), then an intermediate timeframe in which to implement an energy transition (say, 10-40 years). Renewable energy is key to the latter but cannot make sufficient contribution to the former (that can only be done by individual and community reductions in their carbon intensity). And whatever role Nuclear Fusion has for the future of humanity, it is totally irrelevant to solving the challenge we have in the next 50 years to decarbonize our economy.

The other aspect of timescale that is crucial is that the eventual warming of the planet is strongly linked to the peak atmospheric concentration, whereas the peak impacts will be delayed for decades or even centuries, before the Earth system finally reaches a new equilibrium. Therefore, while the decarbonization strategy required for solutions over, say, the 2020-2050 timeframe; the implied impacts timeframe could be 2050-2500, and this delay can make it very difficult to appreciate the urgency for action.

Priority: Tendency to prioritize solutions in a way that precludes others

I was commenting on Project Drawdown on twitter the other day and this elicited a strong response because of a dislike of a ‘list’ approach to solutions. I also do not like ‘lists’ when they imply that the top few should be implemented and the bottom ones ignored.  We are in an ‘all hands on deck’ situation, so we have to be very careful not to exclude solutions that meet the feasibility and timescale tests. Paul Hawken has been very clear that this is not the intention of Project Drawdown (because the different solutions interact and an apparently small solution can act as a catalyst for other solutions).

Centralization: Preference for top-down (centralization) or bottom-up (decentralization) solutions.

Some people like the idea of big solutions which are often underwritten at least by centralised entities like Governments. They argue that big impact require big solutions, and so they have a bias towards solutions like nuclear and an antipathy to lower-tech and less energy intensive solutions like solar and wind.

Others share quite the opposite perspective. They are suspicious of Governments and big business, and like the idea of community based, less intensive solutions. They are often characterized as being unrealistic because of the unending thirst of humanity for consumption suggests an unending need for highly intensive energy sources.

The antagonism between these world views often obscures the obvious: that we will need both top-down and bottom-up solutions. We cannot all have everything we would like. Some give and take will be essential.

This can make for strange bedfellows. Both environmentalists and Tea Party members in Florida supported renewable energy for complementary reasons, and they became allies in defeating large private utilities who were trying to kill renewables.

To counteract these biases, we need to agree on some terms of reference for solving global warming.

  • Firstly, we must of course be guided by the science (namely, the IPCC reports and its projections) in order to measure the scale of the response required. We must take a risk management approach to the potential impacts.
  • Secondly, we need to start with an ‘all hands on deck’ or inclusive philosophy because we have left it so late to tackle decarbonization, we must be very careful before we throw out any ideas.
  • Thirdly, we must agree on a relevant timeline for those solutions we will invest in and scale immediately. For example, for Project Drawdown, that means solutions that are proven, can be scaled and make an impact over the 2020-2050 timescale. Those that cannot need not be ‘thrown out’ but may need more research & development before they move to being operationally scaled.
  • Fourthly, we allow both top-down (centralized) and bottom-up (solutions), but recognise that while Governments dither, it will be up to individuals and social enterprise to act, and so in the short-medium term, it will be the bottom solutions that will have greater impact. Ironically, the much feared ‘World Government’ that right-wing conpiracy theorists most fear, is not what we need right now, and on that, the environmentalists mostly agree!

In the following Climate Solutions Taxonomy I have tried to provide a macro-level view of different solution classes. I have included some solutions which I am not sympathetic too;  such as nuclear and geo-engineering. But bear in mind that the goal here is to map out all solutions. It is not ‘my’ solutions, and is not itself a recommendation or plan.

On one axis we have the top-down versus bottom-up dimension, and on the other axis, broad classes of solution. The taxonomy is therefore not a simple hierarchy, but is multi-dimensional (here I show just two dimensions, but there are more).

Climate Solutions Taxonomy macro view

While I would need to go to a deeper level to show this more clearly, the arrows are suggestive of the system feedbacks that reflect synergies between solutions. For example, solar PV in villages in East Africa support education, which in turn supports improvments in family planning.

It is incredible to me that while we have (properly) invested a lot of intellectual and financial resources in scientific programmes to model the Earth’s climate system (and impacts), there has been dramatically less modelling effort on the economic implications that will help support policy-making (based on the damage from climate change, through what are called Integrated Assessment Models).

But what is even worse is that there seems to have been even less effort – or barely any –  modelling the full range of solutions and their interactions. Yes, there has been modelling of, for example, renewable energy supply and demand (for example in Germany), and yes, Project Drawdown is a great initiative; but I do not see a substantial programme of work, supported by Governments and Academia, that is grappling with the full range of solutions that I have tried to capture in the figure above, and providing an integrated set of tools to support those engaged in planning and implementing solutions.

This is unfortunate at many levels.

I am not here imagining some grand unified theory of climate solutions, where we end up with a spreadsheet telling us how much solar we should build by when and where.

But I do envisage a heuristic tool-kit that would help a town such as the one I was born (Hargesia in Somaliland), or the town in which I now live (Nailsworth in Gloucestershire in the UK), to be able to work through what works for them, to plan and deliver solutions. Each may arrive at different answers, but all need to be grounded in a common base of data and ‘what works’, and a more qualitative body of knowledge on synergies between solutions.

Ideally, the tool-kit would be usable at various levels of granularity, so it could be used at different various scales, and different solutions would emerge at different scales.

A wide range of both quantitative and qualitative methods may be required to grapple with the range of information covered here.

I am looking to explore this further, and am interested in any work or insights people have. Comments welcome.

(c) Richard W. Erskine, 2017

Leave a comment

Filed under Uncategorized

The Curious Case of Heat Pumps in the UK

Heat Pumps, whether Air-Sourced or Ground-Sourced, can and should be making a major contribution to decarbonising heating in the UK. Heating (both space heating and water heating) is major contributor to our carbon footprint.

Heat pumps are now incredibly efficient – for 1 unit of electrical energy you put in you can get at least 3 units back in the form of heat energy (a pump compresses the air and this causes it to rise in temperature; two century old physics at work here).  The process works sufficiently well even in UK winters.

The pumps are now relatively quiet (think microwave level of noise). They can deliver good payback (even more so if there was a cost on carbon). They even work with older properties (countering another one of the many myths surrounding heat pumps).

I even heard Paul Lewis on BBC’s ‘Money Box’ (Radio 4) – clearly getting confused between heat pumps and geothermal energy – saying ‘oh, but you need to be in a certain part of the country to use them’ (or words to that effect).

We clearly need much more education out there to raise awareness of the potential of heat pumps.

When combined with solar (to provide some of the electricity), they are even better.

So why is the take-up of heat pumps still too slow? Why is the Government not pushing them like crazy (it is an emergency, right!)? Why are households, when replacing old boilers, till opting for gas?

When we had the AIDS crisis in the 1980s, the UK Government undertook a major health awareness campaign, and other countries also, which largely succeeded. In an emergency, Governments tend to act in a way that ‘signals’ it is an emergency.

The UK Government is sending no such signals. Bland assurances that the commitment to reach net zero by 2050 is not a substitute for actions. In the arena of heat, where is the massive programme to up-skill plumbers and others? Where is the eduation programme to demystify heat pumps and promote their adoptions?

And where is the joined up thinking?

This article below from Yorkshire Energy Systems, based on their extensive research and practical experience, suggests one reason – that EPCs (Energy Performance Certificates) issued for homes and including recommended solutions – are biased against heat pumps.

The mismatch between what the Government is saying (that heat pumps are part of the decarbonisation solution) and what EPCs are advising suggests a clear lack of joined up thinking.

… and no sign that the Government really believes that urgent action is required.

Leave a comment

Filed under Uncategorized

Increasing Engineering Complexity and the Role of Software

Two recent stories from the world of ‘big’ engineering got me thinking: the massive delays in the Crossrail Project and the fatal errors in the Boeing 737 Max, both of which seem to have been blighted by issues related to software.

Crossrail, prior to the announcement of delays and overspend, was being lauded as an example of an exemplar on-time, on-budget complex project; a real feather in the cap for British engineering. There were documentaries celebrating the amazing care with which the tunnelling was done to avoid damage at the surface, using precise monitoring and accurately positioned webs of hydraulic grouting to stabilise the ground beneath buildings. Even big data was used to help interpret signals received from a 3D array of monitoring stations, to help to actively manage operations during tunnelling and construction. A truly awesome example of advanced engineering, on an epic scale.

The post-mortem has not yet been done on why the delays came so suddenly upon the project, although the finger is being pointed not at the physical construction, but the digital one. To operate the rail service there must be advanced control systems in place, and to ensure these operate safely, a huge number of tests need to be carried out ‘virtually’ in the first instance, to ensure safety is not compromised.

Software is something that the senior management of traditional engineering companies are uncomfortable with; in the old days you could hit a machine with a hammer, but not a virtual machine. They knew intuitively if someone told them nonsense within their chosen engineering discipline; for example, if a junior engineer planned to pour 1000 cubic metres of cement into a hole and believed it would be set in the morning. But if told that testing of a software sub-system will take 15 days, they wouldn’t have a clue as to whether this was realistic or not; they might even ask “can we push to get this done in 10 days?”.

In the world of software, when budgets and timelines press, the most dangerous word used in projects is ‘hope’. “We hope to be finished by the end of the month”; “we hope to have that bug fixed soon”; and so on  Testing is often the first victim of pressurised plans. Junior staff say “we hope to finish”, but by the time the message rises up through the management hierarchy to Board level, there is a confident “we will be finished” inserted into the Powerpoint. Anyone asking tough questions might be seen as slowing the project down when progress needs to be demonstrated.

You can blame the poor (software) engineer, but the real fault lies with the incurious senior management who seem to request an answer they want, rather than try to understand the reality on the ground.

The investigations of the Boeing 737 Max tragedy are also unresolved, but of course, everyone is focusing on the narrow question of the technical design issue related to a critical new feature. There is a much bigger issue at work here.

Arguably, Airbus has pursued the ‘fly by wire’ approach much earlier than Boeing, whose culture has tended to resist over automation of the piloting. Active controls to overcome adverse events has now become part of the design of many modern aircraft, but the issue with the Boeing 737 Max seems to have been that this came along without much in the way of training; and the interaction between the automated controls and the human controls is at the heart of the problem. Was there also a lack of realistic human-centric testing to assess the safety of the combined automated/ human control systems? We will no doubt learn this in due course.

Electronics is of course not new to aerospace industries, but programmable software has grown in importance and increasingly it seems that the issue of growing complexity and how to handle the consequent growth in testing complexity, has perhaps overtaken the abilities of traditional engineering management systems. This is extending to almost every product or project – small and large – as the internet of everything emerges.

This takes me to a scribbled diagram I found in an old notebook – made on a train back in 2014, travelling to London, while I debated the issue of product complexity with a project director for a major engineering project. I have turned this into the Figure below.

Screenshot 2019-08-14 at 19.30.09

There are two aspects of complexity identified for products: 

  • Firstly, the ‘design complexity’, which can be thought of as the number of components making up the product, but also the configurability and connectivity of those components. If printed on paper, you can thinking of how high the pile of paper would be that identified every component, with a description of their configuration and connection. This would apply to physical aspects but also software too; and all the implied test cases. There is a rapid escalation in complexity as we move from car to airliner to military platform.
  • Secondly, the ‘production automation complexity’, which represents the level of automation involved in delivering the required products. Cars as they have become, are seen as having the highest level of production automation complexity. 

You can order a specific build of car, with desired ‘extras’, and colour, and then later see it travelling down the assembly line with over 50% of the tasks completely automated; the resulting product with potentially a nearly unique selection of options chosen by you. It is at the pinnacle of production automation complexity but it also has a significant level of design complexity, albeit well short of others shown in the figure. 

Whereas an aircraft carrier will in each case be collectively significantly different from any other in existence (even when originally conceived as a copy of an existing model) – with changes being made even during its construction – so does not score so high on ‘production automation complexity’. But in terms of ‘design complexity’ it is extremely high (there are only about 20 aircraft carriers in operation globally and half of these are in the US Navy, which perhaps underlines this point).

As we add more software and greater automation, the complexity grows, and arguably, the physical frame of the product is the least complex part of the design or production process. 

I wonder is there a gap between the actual complexity of the final products and an engineering culture that is still heavily weighted towards the physical elements – bonnet of a car, hull of a ship, turbine of a jet engine – and is this gap widening as the software elements grow in scope and ambition? 

Government Ministers, like senior managers, will be happy being photographed next to the wing of a new model of airliner – and talk earnestly about workers riveting steel – but what may be more pivotal to success is some software sub-system buried deep in millions of lines of ‘code’; no photo opportunities here.

Screenshot 2019-08-14 at 19.30.27

As we move from traditional linear ‘deterministic’ programming to non-deterministic algorithms – other questions arise about the increasing role of software. 

Given incomplete, ambiguous or contradictory inputs the software must make a choice about how to act in real time. It may have to take a virtual vote between independently written algorithms. It cannot necessarily rely on supplementary data from external sources (“no, you are definitely nose diving not stalling!”), for system security reasons if not external data bandwidth reasons.

And so we continue to add further responsibility, onto the shoulders of the non-physical elements of the system.

Are Crossrail and the 737 Max representative of a widening gap, reflected in an inability of existing management structures to manage the complexity and associated risks of the software embedded in complex engineering products and projects? 

© Richard W. Erskine, 2019

Leave a comment

Filed under Engineering Complexity, Essay, Uncategorized

Boris loves Corbyn

No not Jeremy; his brother.

For some years now Boris Johnson has channelled the crank theories of Piers Corbyn, who appeared in the 2007 film The Great Global Warming Swindle, which was shown to be ill-founded.

Rather like the myth that carrots helped RAF pilots see at night during WWII  which was such a great story that even today it is repeated and believed, the idea that some changes in the Sun’s output is responsible for recent climate change is a similarly attractive myth, which keeps on being repeated.

The BBC had to apologise for Quentin Letts’ execrable hatched job on the Met Office in 2015, which also included Piers Corbyn. 

The truth is that we know with a confidence unsurpassed in many fields of science what is causing global warming; it’s not the sun, it’s not volcanoes; it’s not contrails. The IPCC’s 5th Assessment Report (2013) was clear that greenhouse gases (principally carbon dioxide) resulting from human activities are the overwhelming driver of global warming (see Figure 8.15)

So you might expect Boris Johnson as a leading politician, to reference the IPCC (Intergovernmental Panel on Climate Change), which gathers, analyses and synthesises the published work of thousands of scientists with relevant expertise on behalf of the nations of the world.

Instead, he has referred to the “great physicist and meteorologist Piers Corbyn” (It’s snowing, and it really feels like the start of a mini ice age, Boris Johnson, Daily Telegraph, 20th January 2013). Piers Corbyn has no expertise in climate science and theories like his have been completely debunked in a paper published in the Proceedings of The Royal Society:

… the long-term changes in solar outputs, which have been postulated as drivers of climate change, have been in the direction opposite to that required to explain, or even contribute to, the observed rise in Earth’s global mean air surface temperature (GMAST) …

What is alarming is that in the face of this strong scientific evidence, some Internet sources with otherwise good reputations for accurate reporting can still give credence to ideas that are of no scientific merit. These are then readily relayed by other irresponsible parts of the media, and the public gain a fully incorrect impression of the status of the scientific debate.

“Solar change and climate: an update in the light of the current exceptional solar minimum”, Proceedings of The Royal Society A, Mike Lockwood, 2nd December 2009

So, for Boris Johnson to call himself an “empiricist” is, frankly, laughable.

He has also cozied up to neoliberal ‘think tanks’ implacably opposed to action on global warming. 

I think we can safely say that hitherto he has firmly placed himself in the DENIAL bucket (in the illustration below).

Screenshot 2019-07-29 at 21.24.30

He shares this perspective with other hard Brexiteers in the new Cabinet, who are itching to deregulate the UK economy, such as Jacob Rees-Mogg, and see action on global warming as a constraint on unregulated markets.

In his acceptance speech on becoming Prime Minister, Boris Johnson never mentioned climate change. But since then he has reiterated Theresa May’s Government’s commitment to net zero by 2050, and

Responding to concerns expressed by Shadow Treasury Minister Anneliese Dodds that he had not focused sufficiently climate change in the initial statements outlining his priorities as Prime Minister, Johnson replied: “The House will know that we place the climate change agenda at the absolute core of what we are doing.”

(edie, 29th July 2019)

He went on to say

He said: “This party believes in the private sector-generated technology which will make that target attainable and deliver hundreds of thousands of jobs. That is the approach we should follow.” …

Predicting that the UK will “no longer” be contributing to climate change by 2050, Johnson said: “We will have led the world in delivering that net-zero target. We will be the home of electric vehicles—cars and even planes—powered by British-made battery technology, which is being developed right here, right now.”

(edie, 29th July 2019)

By imagining that industry alone (without any stated plans for an escalating tax on carbon), can somehow address the huge transformation required, on the timescale required, without concerted effort at every level of Government (top down and bottom up), and civil society, he remains disconnected from reality, let alone science.

Moving from DENIAL to COMPLACENCY is an advance for Boris – assuming for the moment this is not another flip-flopping of positions that he is famed for – but it is hardly the sign of the climate leadership required. We need a leadership that respects the science, and understands the policy implications and prescriptions required.

Did anyone in the house ask the Prime Minister if he accepts and will fully support the recommendation of the Climate Change Committee’s report Net Zero – The UK’s contribution to stopping global warming? 

They need to, because great words need to turned into a plan of action, and every year we delay will make the transition more painful (it is already going to be painful enough, but they are not telling you that, are they?).

That will not be enough to meet the public’s concerns over the climate emergency, and increasingly, the public will be expecting leadership that has moved from COMPLACENCY to the URGENCY position.

Many see GREEN RADICALISM as now an unavoidable response to the COMPLACENCY in Whitehall.

If Boris Johnson fails to jettison his neoliberal friends and the crank science that is part of their tool-kit – who are trying (and have succeeded so far) in putting the breaks on meaningful and urgent action – the longer term political fall-out will make Brexit look like a tea party.

(c) Richard W. Erskine, essaysconcerning.com, July 2019

Leave a comment

Filed under Uncategorized

The Climate Change Committee just failed to invent a time machine

These past two weeks have been such a momentous time for climate change in the UK it is hard to take in. My takes:

On 21st April, Polly Higgins, the lawyer who has spent a decade working towards establishing ecocide as a crime under international law, sadly died. At a meeting at Hawkwood Centre, Stroud, I heard the inspiring Gail Bradbrook speak of how Polly had given her strength in the formation of Extinction Rebellion. 

On 23rd April, Greta Thunberg spoke to British Parliamentarians with a clear message that “you did not act in time’, but with imagination and some ‘Cathedral thinking’ it is not too late to act (full text of speech here).

On 30th April, Extinction Rebellion met with the Environment Secretary Michael Gove, a small step but one that reflects the pressure that their actions (widely supported in the country) are having. Clare Farrell said the meeting “.. was less shit than I thought it would be, but only mildly”, but it’s a start.

On 1st May, the UK’s Parliament has declared a climate emergency

On 2nd May the Committee on Climate Change (CCC), setup under the 2008 Climate Change Act, has published its report “Net Zero – The UK’s contribution to stopping global warming” to the Government on how to reach net zero by 2050.

These are turbulent times. Emotions are stirring. Expectations are high. There is hope, but also fear.

The debate is now raging amongst advocates for climate action about whether the CCC’s report is adequate.

Let’s step back a moment.

The IPCC introduced the idea of a ‘carbon budget’ and this is typically expressed in the form such as (see Note):

“we have an X% chance of avoiding a global mean surface temperature rise of  Y degrees centigrade if our emissions pathway keeps carbon emissions below Z billion tonnes”

The IPCC Special 1.5C Report, looked at how soon we might get to 1.5C and the impacts of this compared to 2C. As Carbon Brief summarised it:

At current rates, human-caused warming is adding around 0.2C to global average temperatures every decade. This is the result of both “past and ongoing emissions”, the report notes.

If this rate continues, the report projects that global average warming “is likely to reach 1.5C between 2030 and 2052”

Perhaps the most shocking and surprising aspect of this report was the difference in impacts between 1.5C and the hitherto international goal of 2C. The New York Times provided the most compelling, graphic summary of the change in impacts. Here are a few examples:

The percentage of the world’s population exposed to extreme heat jumps from 14% to 37%

Loss of insect species jumps from 6% to 18%

Coral reefs suffer “very frequent mass mortalities” in a 1.5C world, but “mostly disappear” in a 2C world.

So, in short, 1.5C is definitely worth fighting for.

In view of the potential to avoid losses, it is not unreasonable for Extinction Rebellion and others to frame this as a “we’ve got 12 years”. The IPCC says it could be as early as 12 years, but it might be as late as 34 years. What would the Precautionary Principle say? 

Well, 12 years of course.

But the time needed to move from our current worldwide emissions to net zero is a steep cliff. You’ve all seen the graph.

D5bh1ZmW0AAvOCd.jpg-large

It seems impossibly steep. It was a difficult but relatively gentle incline if we’d started 30 years ago. Even starting in 2000 was not so bad. Every year since the descent has  become steeper. It is now a precipice.

It is not unreasonable to suggest it is impossibly steep.

It is not unreasonable to suggest we blew it; we messed up.

We have a near impossible task to prevent 1.5C.

I’m angry about this. You should be too.

I am not angry with some scientists or some committee for telling me so. That’s like being angry with a doctor who says you need to lose weight. Who is to blame: the messenger? Maybe I should have listened when they told me 10 years back.

So if the CCC has come to the view that the UK at least can get to net zero by 2050 that is an advance – the original goal in the Act was an 80% reduction by 2050 and they are saying we can do better, we can make it a 100% reduction.

Is it adequate?

Well, how can it ever be adequate in the fundamental sense of preventing human induced impacts from its carbon emissions? They are already with us. Some thresholds are already crossed. Some locked in additional warming is unavoidable.

Odds on, we will lose the Great Barrier Reef.  Let’s not put that burden on a committe to do the immpossible. We are all to blame for creating the precipice.

That makes me sad, furious, mournful, terrified, angry.

There is a saying that the best time to have started serious efforts to decarbonise the economy was 30 years ago, but the next best time is today.

Unfortunately, the CCC does not have access to a time machine.

Everyone is angry.

Some are angry at the CCC for not guaranteeing we stay below 1.5C, or even making it the central goal. 

Extinction Rebellion tweeted:

The advice of @theCCCuk to the UK government is a betrayal of current & future generations made all the more shocking coming just hours after UK MPs passed a motion to declare an environment & climate emergency. 

It is I think the target of 2050 that has angered activists. It should be remembered that 2050 was baked into the Climate Change Act (2008). It should be no surprise it features in the CCC’s latest report. The CCC is a statutory body. If we don’t like their terms of reference then it’s easy: we vote in a Government that will revise the 2008 Act. We haven’t yet achieved that.

Professor Julia Steinberger is no delayist (quite the opposite, she’s as radical as they come), and she has tweeted back as follows:

Ok, everyone, enough. I do need to get some work done around here.

(1) stop pretending you’ve read & digested the whole CCC net-zero report. It’s 277 pretty dense pages long. 

(2) there is a lot of good stuff & hard work  making the numbers work there.  

3) Figuring out what it means for various sectors, work, finance, education, training, our daily lives & cities & local authorities and so on is going to take some thinking through.

(4) If you want a faster target, fine! I do too! Can you do it without being horrid to the authors and researchers who’ve worked like maniacs to try to get this much figured out? THEY WANT TO BE ON YOUR SIDE! 

(5) So read it, share it, reflect on it, and try to figure out what & how we can do a lot faster, and what & how we can accelerate the slower stuff.

Treat the CCC report as in reality an ambitious plan – it really is – in the face of the precipice, but also believe we can do better.

These two ideas are not mutually exclusive.

Maybe we do not believe that people can make the consumption changes that will make it possible to be more ambitious; goals that politicians might struggle to deliver.

Yet communities might decide – to hell with it – we can do this. Yes we can, do better.

Some are scornful at Extension Rebellion for asking the impossible, but they are right to press for better. However, can we stop the in-fighting, which has undermined many important fights against dark forces in the past. Let’s not make that mistake again.

Can we all be a little more forgiving of each other, faced with our terrible situation.

We are between a rock and a hard place.

We should study the CCC report. Take it to our climate meetings in our towns, and halls, and discuss it. 

How can we help deliver this?

How can we do even better?

I for one will be taking the CCC report to the next meeting of the climate action group I help run.

I’m still mournful.

I’m still angry.

But I am also a problem solver who wants to make a difference.

Good work CCC.

Good work XR.

We are all in this together.

… and we don’t have a time machine, so we look forward.

Let not the best be the enemy of the good.

Let not the good be a reason for not striving for better, even while the best is a ship that has long sailed.

© Richard W. Erskine, 2019

 

Note:

You pick an X and Y, and the IPCC will tell how much we can emit (Z). The ‘X%’ is translated into precisely defined usages of terms such as ‘unlikely’, ‘likely’, ‘very likely’, etc. To say something is ‘likely‘ the IPCC means it has a greater than 66% chance of happening.

Leave a comment

Filed under Global Warming Solutions, Science in Society, Transition to Low Carbon, Uncategorized

No Magic Bullet for Climate Change

Matt McGrath, Environment Correspondent for BBC News, posted a short piece entitled A ‘magic bullet’ to capture carbon dioxide?

Which was introduced as follows:

“CO2 is a powerful warming gas but there’s not a lot of it in the atmosphere – for every million particles of air, there are 410 of CO2.

The gas is helping to drive temperatures up around the world, but the comparatively low concentration means it is difficult to design efficient machines to remove it.

But a Canadian company, Carbon Engineering, believes it has found a solution.

Air is exposed to a chemical solution that concentrates the CO2. Further refinements mean the gas can be purified into a form that can be stored or utilised as a liquid fuel.”

The ‘magic bullet’ in the title is of course clickbait, because anyone who has spent any time looking at all the ways we need to reduce emissions or to draw down CO2 from the atmosphere will know that we need a wide range of solutions. There is no single ‘magic bullet’.

Not specifically commenting on this story, but in a related piece about so-called ‘Negative Emissions Technologies’ (NETs), Glen Peters highlights the scale of the challenge facing any type of NET, which aims to remove CO₂ from the atmosphere. 

To remove the excess CO₂, sufficient at least to keep below 2oC …

“essentially we need to build an industry that’s 3 to 4 times the size of the current oil & gas industry just to clean up our waste” (2nd April 2019)

The issue is one of both scale and timing. We need big interventions and we need them fast (or fast enough).

It would take time and considerable resources to scale up NETs, which are currently mostly still in their development phase, and so the immediate focus needs to be on other strategies including energy in the home, reduced consumption, rolling out renewables, changing diets, etc., for which the solutions are ready and waiting and just needed a massive push from Governments, industry and civil society.

Glen Peters stresses that the first priority is emissions reductions, rather than capture, although capture will be needed in due course either using natural methods, or technological ones, or some combination. 

There are big questions hanging over NETs such as BECCS (Bio-Energy with Carbon Capture and Storage), which would require between 1 and 5 ‘Indias’ of land area to make the contribution needed. The continuing fertility of soils to grow plants for BECCS and competition for land-use for agriculture, are just two of the concerns raised.

The technology highlighted in the BBC piece is DAC (Direct Air Capture) which could – powered by renewables – have great potential and avoids land-use competition, but is energy intensive. As with BECCS, DAC used in sequestration mode would still need to overcome hurdles, such as the geological ones related to safely burying CO₂ in perpetuity (my emphasis)

My concerns with Carbon Engineering’s proposed application of DAC – for fuel to be used in transport – are as follows.

Firstly, road, rail, and even shipping, are being electrified, making fuel redundant.  There is the competing hydrogen economy that would use fuel, but a non-carbon based one.  Either way, this will rapidly decarbonise these parts of transport. Since transport is overall 25% of global emissions currently, this is a highly significant ‘quick win’ for the planet (within 2 or at most 3 decades).

Commercial Aviation is 13% of transport’s carbon emissions, but is less easy to electrify – at the scale of airliners travelling long-distance – because of the current energy density and weight of batteries (this could change in the future, as Professor Clare Grey explained during an episode of The Life Scientific).

Aviation is therefore just above 3% of global emissions (13% of 25%) from all sectors (albeit a probably increasing percentage).  A development-stage technology being focused on just 3% of global emissions can hardly be framed as a ‘magic bullet’ to the climate crisis.

Secondly, in terms of Government financing, would we focus it on decarbonising road, or decarbonising aviation? I suggest the former not the latter if it came down to a choice.

DAC may be great to invest some money in, as development phase technology, but the big bucks needed immediately, to make a huge dent in emissions, are in areas such as road sector. 

It is not a binary choice of course, but the issue with financing is timing and scale again. The many solutions we forge ahead with now must meet the test that they are proven (not futurism/ delayism solutions like nuclear fusion), can be scaled fast, and will contribute significantly to carbon reductions while also helping to transition society in positive ways (as for example, the solutions in Project Drawdown offer, with numerous ‘co-benefits’)

Finally, it is worth stressing that the focus for Carbon Engineering (and hence the BBC report) is on the capture of carbon dioxide, to be converted into hydrocarbons as fuel, for burning. This effectively recycles atmospheric carbon. It neither adds to, nor takes away, carbon dioxide through this cycle.

This therefore makes zero change to CO₂ in the atmosphere. It might be whimsically called Carbon Capture and re-Emission technology (CCE)! 

So I think it was wrong of the BBC piece to give the impression that the goal was ‘Carbon Capture and Storage’ (CCS), whose aim is to draw down CO₂.

It is confusing to conflate CCE and CCS!

Especially when neither are magic bullets.

(c) Richard W. Erskine, 2019

Leave a comment

Filed under Uncategorized

‘Possibilities Everywhere’ for more BP Greenwash

If you say “I am cutting down on smoking” and it turns out that from 7,300 cigarettes per year over the last 10 years you have managed to reduce your consumption by 25 cigarettes per year over the last 4 years and now are at 7,200 per year, then yes, it is true, you are cutting down.

But are you being honest?

In fact, it is fair to say that far from telling the truth you are in a sense lying or at least ‘dissembling’

screenshot 2019-01-23 at 11.15.32

That is what BP is doing with it’s latest massive ‘Possibilities Everywhere’ public relations and media advertising campaign, which was “jointly created by Ogilvy New York and Purple Strategies, with the films directed by Diego Contreras through Reset (US) and Academy (UK). The global media agency is Mindshare.”, as Campaign reports.

In a Youtube video on the initiative Lightsource BP is craftily suggesting it is seriously investing in solar energy, but don’t worry folks if the sun goes in, because we have plenty of gas as backup.

They want it both ways: claiming to be supporting renewables while continuing to push ahead with investments in fossil fuel discovery and production.

So let’s look at BP Annual Report and Form 20-F 2017 and what do we find. Let’s follow the money.

The on-going investments in upstream oil & gas development runs into many billions of dollars annually, which rather dwarfs the measly £300 million that Lightsource will be getting over three years by a factor of over 250.

This is not a serious push for renewables. 

If they were serious they would have actual renewables energy generation (arising from their ‘investments’) as one of their Key Performance Indicators (KPIs) in their Annual Report. They don’t because they don’t actually care, and they don’t expect their investors to care.

No, this is what BP cares about (from the same BP Annual Report) …

screenshot 2019-01-23 at 11.05.22

…. the value of their fossil fuel reserves. The more the better, because that has a huge influence on the share price.

In the Annual Report referenced above, BP states:

“Today, oil and gas account for almost 60% of all energy used. Even in a scenario that is consistent with the Paris goals of limiting warming to less than 2oC, oil and gas could provide around 40% of all energy used by 2040. So it’s essential that action is taken to reduce emissions from their production and use.

In a low carbon world, gas offers a much cleaner alternative to coal for power generation and a valuable back-up for renewables, for example when the sun and wind aren’t available. Gas also provides heat for industry and homes and fuel for trucks and ships.”

How do we decode this?

Well, what BP sees in a collapse of coal is a massive opportunity to grow oil & gas, but especially gas; they are not the only oil & gas company spotting the opportunity.

So they are not pushing energy storage for renewables, no, they are using intermittency as a messaging ploy to have gas as “a backup”.  So while 60% to 40% might look like a fall in profits, for BP’s gas investments it is a growth business, and less renewables means more growth in that gas business. So don’t get too big for your boots renewables – if we own you we can keep you in your place. Maybe you can rule when we have dug the last hole, but don’t expect that any time soon.

No amount of tinkering with emissions from production facilities or more efficient end-use consumption will avoid the conclusion that the “transition” they talk of must be a whole lot more urgent than the – dare I use the metaphor – glacial pace which BP are demonstrating.

Maybe BP should take seriously 3 key learning points:

  • Firstly, we have run out of time to keep playing these games. Your fossil fuel industry has to be placed on an aggressive de-growth plan, not the growth one you envisage, if you take seriously the implications of the IPCC’s 1.5C Special Report.
  • Secondly, far from your not-so-subtle digs at renewables, it is possible to construct an energy regime based on renewables (that does address intermittency issues); try reading reports like Zero Carbon Britain: Rethinking the Future from the Centre for Alternative Technology.
  • Thirdly, your investors will not thank you if you continue to ignore the serious risks from a ‘carbon bubble’. Claiming a value for BP assets based on unburnable fossil fuels will catch you out, sooner or later, and that your shareholders, pensioners and many others won’t thank you for your complacency.

Dissembling in respect of your commitment to the transition – which you intend to drag out for as long as possible it seems – will fool no one, and certainly not a public increasingly concerned about the impacts of global warming (and, by the way, also the impacts of plastics – another of your gifts to Mother Earth).

We are out of time.

By investing seriously and urgently in solutions that demonstrate a real commitment to the transition, and in planning to leave a whole lotta reserves in the ground, you can earn the trust of the public.

Change your KPIs to show you have read and understood the science on global warming.

Then you can build a PR campaign that demonstrates honesty and earns trust.

Until then, please, no more #BPGreenwash.

(c) Richard W. Erskine, 2019

Leave a comment

Filed under Transition to Low Carbon

Veganism is an answer to the climate crisis, despite what the critics say

How the world feeds itself while at the same time becoming carbon neutral within a few decades (see Note 1), while at the same time protecting biodiversity and respecting other planetary boundaries, is a hugely complex issue. 

It is not helped by simplistic arguments on any side of the debate.

Food is much more complex than say, electricity generation or transport, because it brings together so many different interlocking threads, not least our different cultures and trading practices around the world; it cannot be glibly addressed through some technical silver bullet or indeed any single prescription.

Although it seems perfectly possible to have rewilding without conflating this with meat production for human consumption, Knepp Castle Estate clearly see these twinned in their overall vision for the Estate.

Knepp Castle Estate have done some wonderful work in their experiment to rewild the Estate’s farm and this has yielded some great results in promoting biodiversity on the farm. 

It is therefore disappointing that Isabelle Tree – who runs the Estate with her husband Sir Charles Burrell – decided that the way to counter what she believes are simplistic “exhortations” in favour of veganism is to use strawman arguments, which I will come to in a moment.

In her article “If you want to save the world, veganism isn’t the answer: Intensively farmed meat and dairy are a blight, but so are fields of soya and maize. There is another way” (Guardian, 25th August 2018), she offers a vision of meat produced on a rewilded farm as an alternative.

The article ends with a statement I think can be defended (even if I disagree with it):

“There’s no question we should all be eating far less meat, and calls for an end to high-carbon, polluting, unethical, intensive forms of grain-fed meat production are commendable. But if your concerns as a vegan are the environment, animal welfare and your own health, then it’s no longer possible to pretend that these are all met simply by giving up meat and dairy.”

The key words here are “simply by”, because of course, any diet begs a lot of questions on how food is produced, processed and transported. We all agree it is complicated.  We can all agree that a goat farmer in the Himalayas cannot simply adopt the practices of a farmer in England’s green pastures. We need to respect cultural and geographic diversity.

Except her last sentence does not address crop production methods, but simply asserts:

“Counterintuitive as it may seem, adding the occasional organic, pasture-fed steak to your diet could be the right way to square the circle.”

The problem is that to feed the UK or feed the world, we need to know what this means in quantitative terms, and there is really no indication of what a balanced omnivorous diet would look like or how to scale up the Knepp Castle Estate experiment, even for the UK.

Today, the reality of the impact – both in ecological and climate terms – of the meat industry is pretty terrifying, as the Friends Of the Earth laid bare in their 2008 report  “What’s feeding our food? – The environmental and social impacts of the livestock sector”.

We need alternatives, for sure, but any changes will take a long time to make a dent on a global scale. The world could simply follow the example of India with it relatively low level of meat consumption, but any proposed system must be able to scale effectively. 

Protein from livestock requires much greater land use, and also puts huge pressure on water resources, and as noted in the study ‘Redefining agricultural yields: from tonnes to people nourished per hectare’:

“… shifting the crop calories used for feed and other uses to direct human consumption could potentially feed an additional ∼4 billion people.”

Emily Cassidy et al, Environ. Res. Lett. 8 (2013) 034015

And if our goal is to address climate disruption as well as sustainable agriculture, the land will be in demand for other purposes: crops for human consumption; re-forestation; bio-energy crops; renewable energy assets; etc. 

Meat production whether it is intensively produced, or in a rewilded context, cannot wish away the basic fact that it is a relatively inefficient way of using land to produce calories.

The UK currently imports over 40% of its food, and on top of that imports soy and other crops for feed for livestock. Of the land we have in the UK, about 50% is given over to grassland for livestock, as illustrated in this Figure from the Zero Carbon Britain Report: Rethinking The Future:

screenshot 2019-01-07 at 09.19.53

The Centre for Alternative Technology’s alternative, set out in the same report, is aimed at getting the UK to zero carbon; balancing all the sectors that are involved, including food production, but recognising we need to fit everything required into the available land. They arrive at a radically different distribution of land-use:

screenshot 2019-01-07 at 09.20.06

In their scenario, livestock are not eliminated but are radically reduced.

What is most disappointing about Isabella Tree’s piece in the Guardian is that she feels the need to use Strawman Arguments to support her case (which immediately suggests it has some holes in it):

Strawman argument #1

“Rather than being seduced by exhortations to eat more products made from industrially grown soya, maize and grains, we should be encouraging sustainable forms of meat and dairy production based on traditional rotational systems, permanent pasture and conservation grazing.”  

My Response: Well, since most of those crops are grown for animal consumption, that is another reason to release that land to grow sustainable crops (in soil-carbon caring ways); for forests; for bio-energy crops; for human habitation; etc.  The net result of low intensive meat production is that we would need to massively reduce meat production.

Strawman argument #2

“In the vegan equation, by contrast, the carbon cost of ploughing is rarely considered … up to 70% of the carbon in our cultivated soils has been lost to the atmosphere”

My Response: Untrue. Why do we have the permaculture movement, low-till systems, etc.? And to stress again, the majority of the cropland in UK and US, for example, today is to feed livestock. If we want to improve soil carbon there are many ways of doing it.

I could go on.

She implies that the proposed method of farming will make a big impact on soil carbon sequestration, and there is no doubt that soil plays a hugely important role in carbon sequestration, but this is an area which is very complex. It is reassuring that the article does not make outlandish claims (such as those made by Savory, see Note 2), but again, there is a lack of any estimates as to the extent to which the proposed farming practices would mitigate increases in greenhouse gas emissions. Plausibility arguments won’t cut it I’m afraid. 

For those interested in exploring all the questions touched on so far and more besides – with the benefit of some science to back up claims –  they could not do better than look at a few of the excellent food research organisations in Oxford. 

Isabella Tree acknowledges that we need to reduce meat consumption. No doubt she would agree that the sky-rocketing consumption of meat in China and globally is unsustainable. Here is the current picture:

screenshot 2019-01-07 at 14.28.04

 And as Godfray et al. state in the paper from which I took this Figure:

“It is difficult to envisage how the world could supply a population of 10 billion or more people with the quantity of meat currently consumed in most high-income countries without substantial negative effects on environmental sustainability. “

Godfray et al., Science 361, 243 (2018), 20th July 2018

Yes, it is much more complicated than simply choosing one’s diet, and we must all take care to consider the processes and pathways by which we get our food and how land is used – whether we eat meat or not. 

But for many, veganism remains an increasingly obvious option to make an immediate dent in one’s carbon footprint, and it remains a perfectly justifiable choice, whether from an environmental, ethical or scientific standpoint. 

It is by no means clear that even as a portion of our weekly diet, rewilded meat will be the solution to the world’s environmental and sustainability challenges, or at least on the timescales required. Veganism can make an immediate impact.

In fact, without a whole lot more vegans on this planet, it is difficult to see how those who want to remain meat eaters can carry on doing so with a clear conscience, given the current (as opposed to, wished for) farming practices.

In the future, meat eaters may have to pay a lot more to eat meat and even then give a big nod of thanks to vegans for making a space for them to do so.

If Isabella Tree’s article was entitled “If you want to save the world, veganism isn’t the whole answer: Intensively farmed meat and dairy are a blight along with the fields of soya and maize they depend on. But there is a case for low levels of meat consumption.” …          it would have been less catchy but at least defensible.

Knepp Castle Estate are doing great work showing how to promote biodiversity on their farm, but as a model for feeding the world and preventing dangerous climate disruption, by 2050 or earlier … they have failed to make a convincing case that they have a credible plan.

(c) Richard W. Erskine, 2019

NOTES

Note 1

On our current emissions trajectory, the world “is likely to reach 1.5C between 2030 and 2052”. If we are to avoid a global mean surface temperature rise of 1.5C, net global CO2 emissions need to fall by about 45% from 2010 levels by 2030 and reach “net zero” by around 2050.  See Carbon Brief’s ‘In-depth Q&A: The IPCC’s special report on climate change at 1.5C’ for more details. The IPCC’s 1.5C report made it clear that the difference between a 1.5C world and a 2C world was very significant, and so every year counts. The sooner we can peak the atmospheric concentration of greenhouse gases (especially CO2, being long-lived) in the atmosphere, the better.

Note 2

Savory suggested that over a period of 3 or 4 decades you can draw down the whole of the anthropogenic amount that has accumulated (which is nearly 2000 Gigatonnes of carbon dioxide), whereas a realistic assessment (e.g. www.drawdown.org ) is suggesting a figure of 14 gigatonnes of carbon dioxide (more than 100 times less) is possible in the 2020-2050 timeframe.

FCRN explored Savory’s methods and claims, and find that despite decades of trying, he has not demonstrated that his methods work.  Savory’s case is very weak, and he ends up (in his exchanges with FCRN) almost discounting science; saying his methods are not susceptible to scientific investigations. 

In an attempt to find some science to back himself up, Savory referenced Gattinger, but that doesn’t hold up either. Track down Gattinger et al’s work  and it reveals that soil organic carbon could (on average, with a large spread) capture 0.4GtC/year (nowhere near annual anthropogenic emissions of 10GtC), and if it cannot keep up with annual emissions, forget soaking up the many decades of historical emissions (the 50% of these that persists for a very long time in the atmosphere), which some are claiming is possible.

I recommend Dr Tara Garnett‘s Blog-post: ‘Why eating grass-fed beef isn’t going to help fight climate change’, 3rd October 2017 – and if you need more, read the full paper referenced in the blog.

2 Comments

Filed under Uncategorized